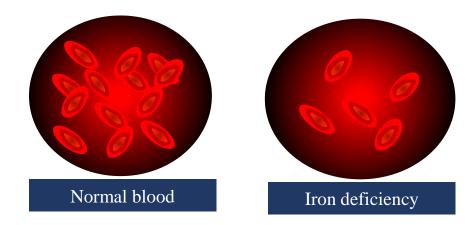


Effectiveness of an Iron subsidy program in improving hemoglobin values End Stage Kidney Disease hemodialysis patients (Abstract No.1371)

Yusuke Ozawa⁴, Tze Ting Luo², Nor Majidah Mustaffa Kamal⁵, Kuen Koh Pao⁷, Mathew Patrick Williams³, Rosnawati Yahya⁶, **Li Ping Tan¹**

¹Department of Nephrology, Davita Malaysia, Malaysia ²Department of Quality, Davita, Malaysia ³Department of Management, Davita, Malaysia ⁴Department of Quality, DaVita, Malaysia ⁵Department of Operations, Davita, Malaysia ⁶Department of Nephrology, General Hospital Kuala Lumpur, Malaysia ⁷Department of Finance, Davita, Malaysia


Introduction

Anemia is an important marker of cardiovascular morbidity and mortality in haemodialysis patients. Maintaining an adequate level of ha emoglobin requires adequate erythrocyte stimulating agent (ESA) as well as ensuring proper stores of iron. In our practice, intravenous ir on is often not provided due to cost, resulting in lower than targeted haemoglobin results.

Adjusted hazard ratio mortality of HD patients (1996-2016)*1

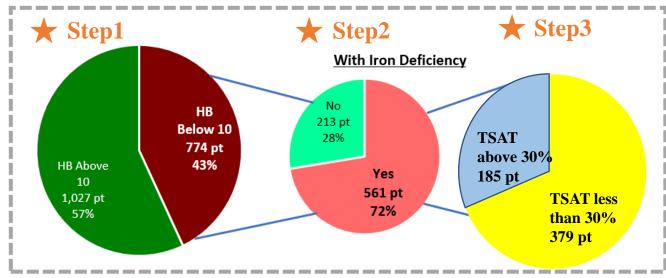
Factors	n H	azard ratio	95% Cl	P-value
Hemoglobin <i>(g/dL)</i>				
<10	31171	1.649(1.	614, 1.685)	<0.001
10-<12	39712	1		
>=12	3942	0.749(0.	713, 0.787)	<0.001

- Malaysian NRR (National Renal Registry) 2016.
- According to the report, HR is high if HB < 10g/dL

- Iron deficiency prevents the production of haemoglobin*².
- Low Haemoglobin results in shortness of breath*3 and other symp toms like frequent headaches etc,.

*1: 24th Report of the Malaysian Dialysis and Transplant Registry 2016, Malaysian National Renal Registry

*2: Jeffery L. Miller, Iron Deficiency Anemia: A Common and Curable Disease. *Cold Spring Harb Perspect Med*, 2013, 3(7), a011866 *3: Black MM, Quigg AM, Hurley KM, Pepper MR 2011. Iron deficiency and iron-deficiency anemia in the first two years of life: Strategies to prevent loss of developmental potential. *Nutr Rev* 69: S64–S70



Method – Selection of Patients

We surmise that provision of iron at a subsidized rate would help in lowering rates of anemia. We have selected pat ients as target for giving iron. The Selection requirements is : 1.) HB less than 10, 2) Iron Deficiency, 3) TSAT less t han 30%.

Patient Selection requirements for the project

- **Step1**: Check HB level of 1,801 patients and select 774 pts whose HB below 10.
- **Step2:** Identify 561 patients who don't have enough iron.
- **Step3:** Select 379 patients whose TSAT level is less than 30%

Patient's Characteristic

Factors	Rate%(# of patients)		
	<40	16%(223)	
Age	40-65	62%(79)	
	65<	16%(59)	
Cardan	Male	49%(178)	
Gender	Female	51%(183)	
Ave. HB (g/	8.7(379)		
Ave. TSAT (23.7(379)		
Ave. Ferrit	Ave. Ferritin		

Method – Intervention & Data Monitoring

Intravenous iron sucrose, 100mg weekly during haemodialysis for total of 10 doses delivering a total of 1000mg to 379 patients who matched our requirements. We monitor the project progress by using format below. Also, we assess effectiveness of the impact on HB, Ferritin, TSAT level for 3 monthly basis.

Intervention

1. Planned to give intravenous iron sucrose at 100mg weekly for 10 doses for 379patients.

Data monitoring

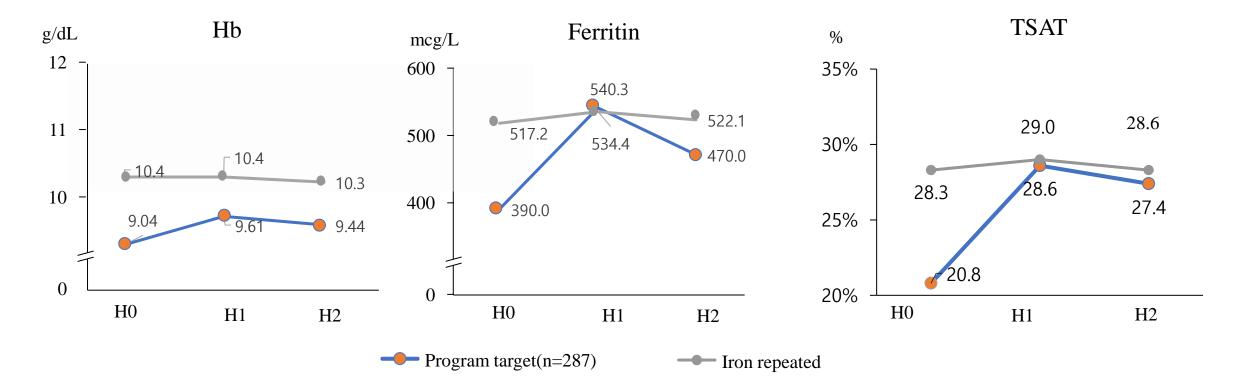
- 1. Blood test monitoring on monthly basis (HB), three monthly basis (Ferritin, TSAT)
- 2. Monthly monitoring for number of EPO given
- 3. Checking on project progress by using Project Observation Template

Project Observation Template

Name	Sponsor name	Hb level	Tsat level	Course completed (answer comple te / in progress / Not started)	why IV iron	How many dose prescribed by NIC (e.g. 10dose/week x 10weeks)	How many dose given	First date of giving first Dose	End date of last dose	Blood Cancer (Answer Y es or No)	Allergic reaction (Answer Y es or No)
Patient A	Sponsor A										
Patient B	Sponsor B										

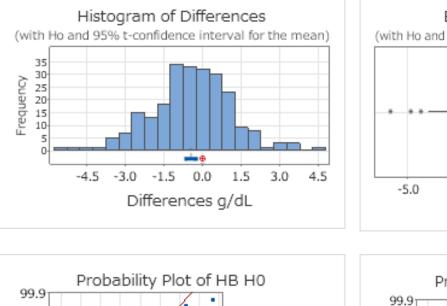
379 patients were identified as meeting the criteria but only 287 patients were analysed. Patients were excluded due to death, refusal of continuation after single dose of iron, allergic reactions and transferring to different dialysis centr es.

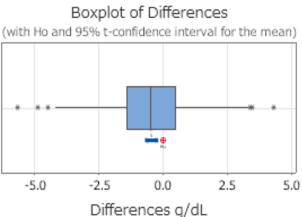
Patient's project progress

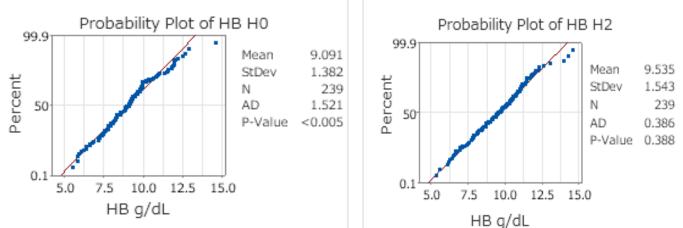

- Complete the full 1000mg course(100mg iron weekly for 10 weeks)
- Not complete the course, only received 600mg(100mg monthly)
- Not complete the course, only received 600mg(200mg monthly)
- Not complete the course, only received 600mg(100mg 2weekly)

Patient's Characteristic

	Factors	Rate%(# of patients)	
S)		<40	17%(47)
	Age	40-65	69%(172)
		65<	22%(60)
%	Conder	Male	48%(117)
	Gender	Female	52%(129)
	Ave. HB (g/	9.0(287)	
	Ave.TSAT (20.5(287)	
	Ave.Ferr	390(287)	




At the end of the program, despite varying iron provision, average ferritin levels had increased from 390mcg/L to 470 mcg/L while haemoglobin levels increased from 9.0 to 9.4g/dL. average iron saturation had increased from 20.8% to 27.4%.



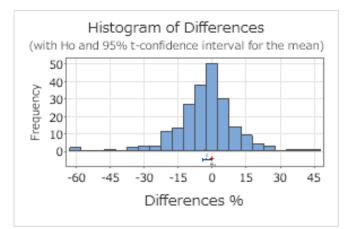
As the paired T-Test results, significant differences were observed in HB level before and after this project.

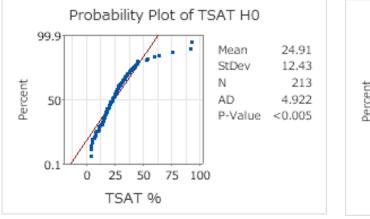
Paired T-Test Results

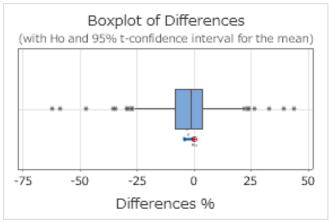
Descriptive Statistics

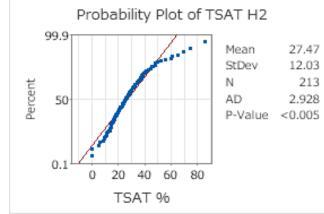
Sample	Ν	Mean g/dL	StDev	SE Mean
HB H0	239	9.0908	1.3820	0.0894
HB H2	239	9.5351	1.5427	0.0998

Estimation for Paired Difference


MeanStDevSE Mean95% CI for μ_{-} difference-0.44441.53180.0991(-0.6395, -0.2492) μ_{-} difference: population mean of (HB H0 - HB H2)


T Test


Null hypothesisHo: $\mu_difference = 0$ Alternative hypothesisH1: $\mu_difference \neq 0$ **T-ValueP-Value**-4.480.000

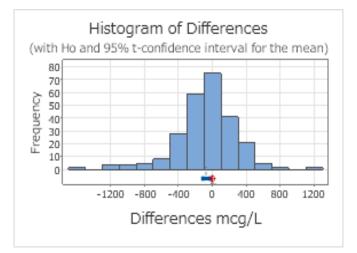


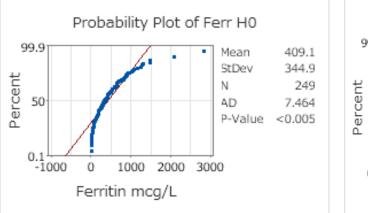
As the paired T-Test results, significant differences were observed in TSAT level before and after this project

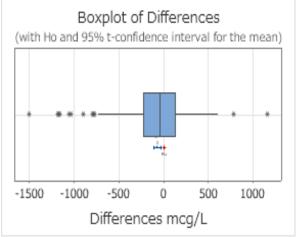
Paired T-Test Results

Descriptiv	e Statistic	S		
Sample	Ν	Mean %	StDev	SE Mean
TSATH0	213	24.908	12.431	0.852
TSATH2	213	27.474	12.033	0.825

Estimation for Paired Difference


Mean	StDev	SE Mean	95% CI for µ_difference		
-2.566	13.351	0.915	(-4.369, -0.763)		
$\mu_{difference: population mean of (TSATH0 - TSATH2)$					


T Test


Null hypothesisHo: μ _difference = 0Alternative hypothesis H1: μ _difference $\neq 0$ **T-ValueP-Value**-2.81**0.004**

As the paired T-Test results, significant differences were observed in Ferritin level before and after this project

Paired T-Test Results

Descriptive Statistics

Sample	Ν	Mean mcg/L	StDev	SE Mean
Ferr H0	249	409.1	344.9	21.9
Ferr H2	249	482.1	384.5	24.4

Estimation for Paired Difference

Mean	StDev	SE Mean	95% Cl for μ difference		
-73.1	333.7	21.1	(-114.7, -31.4)		
$\mu_difference:$ population mean of (Ferr H0 - Ferr H2)					

T Test

Null hypothesisH_0: μ _difference = 0Alternative hypothesisH_1: μ _difference \neq 0**T-ValueP-Value**-3.46**0.001**

Study

Through this effort, improvements in HB, Ferritin, and TSAT due to Iron were observed. We aim to improve reproducibility by increasing the number of samples.

Benefit

- This validation was conducted on approximately 300 subjects and was able to monitor the improvement of blood test items due to Iron.
- By monitoring blood test results for approximately six months, we were able to verify the continued effectiveness of Iron.

Weakness

- Small sample size
- Frequency of blood testing is 3 months and testing frequency needs to be improved.

Conclusion

Iron delivery can effectively improve haemoglobin levels. Iron can be delivered in a variety of prescriptions and still achieve increases in haemoglobin. When cost is not a constraint, the take up rate for iron is high. Sur prisingly, the increase is iron is not mirrored by a similar magnitude of increase in haemoglobin

Reference

*1: 24th Report of the Malaysian Dialysis and Transplant Registry 2016, Malaysian National Renal Registry

*2:Jeffery L. Miller, Iron Deficiency Anemia: A Common and Curable Disease. *Cold Spring Harb Perspect Med*, 2013, 3(7), a011866

*3: Black MM, Quigg AM, Hurley KM, Pepper MR 2011. Iron deficiency and iron-deficiency anemia in the first two years of life: Strategies to prevent loss of developmental potential. *Nutr Rev* 69: S64–S70

*4: Alleyne M, Horne MK, Miller JL 2008. Individualized treatment for iron-deficiency anemia in adults. *Am J Med* 121: 9 43–948